土木工程网-工程师的家园
盐沼水沉积物植物界面泥沙输移过程研究进展概述
RSS 打印 复制链接 发布时间:2017-04-11 10:11:24

2、 界面泥沙垂直输移过程

目前对界面泥沙垂直输移过程的研究国内外大多是对滩面垂直淤积速率和悬沙浓度的垂向变化的研究,在某断面上不同的观测点做定期或定时的观测来定量研究。 

Marker在Parkgate(英格兰Dee河口)估计1947至1963年垂直增长沉积速率为25mm/a。 [19] Armentano和Woodwell发现 LongIsland盐沼过去100年的沉积速率为0.64cm/a。 [20] Delaune等测量到路易斯安娜州西南Spartina patens盐沼的增长速率平均为 0.8mm/a,在过去的三十年中,垂直增长速率还没有与海岸下沉相匹配。 [21] Stevenson 等测量到马里兰东岸的沉积速率为0.17到0.36cm/a。 [22] 

我国学者朱骏, 杨世伦等对长江口滨海某研究断面上24个观测点的定期(每周一次) 滩面高程测量结果的分析, 定量化地探讨了滩面垂直淤积速率的变化,结果分析得出: (1) 滩面的年垂直淤积速率在淹没机率为30 % 左右的沼泽中下部(位于平均小潮高潮线与平均高潮线之间) 达到4915 cm/ a 的最大值。自这点向岸和向海垂直淤积速率逐渐降低, 向岸在近堤处(接近平均大潮高潮位) 达到最小值212 cm/ a (仅为最大值的1/ 22) , 向海在光滩—沼泽交界处出现另一低值, 而在光滩上又有所增大。 [17] 时钟利用“声学悬沙观测系统”对长江口深水航道北槽在涨潮,涨急,涨憩,落潮的悬沙浓度的垂向变化做了观测分析,得出在涨潮,涨憩时悬沙浓度垂向梯度较小,(浓度小于1.0gl -1 ),而在涨急和落潮时悬沙浓度垂向梯度较大,(可达10gl -1 ),在接近落憩时,悬沙浓度的垂向梯度适中。 [23] 

目前已有众多学者利用声学仪器获得了定点或断面上的悬沙浓度分布剖面, [24-31] 通过对长江口南港和南槽两站悬沙粒径的频率分布曲线的分析得出长江口在枯水期垂向混合作用强烈。在水下不同深度3米,6米,11米处对悬沙的砂、粉砂和粘土三种组分所对应的标准差峰值的比较分析,说明组分在水体上部的变化程度要大于底部, 主要是由于底部再悬浮作用将下部的粗颗粒物质带到水体上部造成的。同时悬沙各粒级在半日潮周期内的变化特性也反映了再悬浮作用的影响∶随着水深的减小,其敏感组分相应增多,同时变化程度(标准差值) 也增大。此外,水深、流速和悬沙浓度的潮变动相关项以及垂向环流的作用和垂向潮振荡切变作用也和悬沙输运密切相关,这表明了再悬浮和垂向环流对悬沙输运的重要作用。 [31] 在南汇东滩的高潮滩、中潮滩和低潮滩的不同观测点的泥沙运移模型研究中发现, 高、中潮滩的泥沙向岸输送, 低潮滩上的泥沙上层归槽, 下层上滩, 形成一个顺时针向的泥沙输移垂向环流。 [32] 

3、结论

由上述的研究现状可知,该领域研究难度大,耗费高(高精度检测仪器,野外观测平台建设等),致使研究深度相对不足,主要表现为以下几个特点:

1、野外实地获得第一手数据困难。目前所得数据大多是在理想状态下采集,野外考察获取数据比较少,并且多以定性分析为主,某种程度上缺乏定量分析,以至影响该问题的深入研究。

2、数据的可靠性受到质疑。使用传统仪器的局限性是工作量大、耗资巨大、数据的空间分辨率较低,存在一定误差,这需要我们在实际工作中尽量采用一些高精度,高分辨率实验仪器和设备采集样本,以缩小与实际的误差。当然这需要一定技术和资金的支持。

3、界面数据的连续性采集不够。目前数据采集和样品取样一般多进行的是小尺度上(时日)的,时间间隔一般在2,3个月左右,跨年度的采集取样较少,对比分析较少,这必将影响该领域整体性的研究,具有一定的局限性。

4、界面的整体性研究不足。当前研究多侧重于界面上各个因子的独立研究,未能把整个界面内的泥沙输移过程作为一个整体的研究对象,研究的领域比较局限。尤其是对植物覆盖条件下水流中的悬沙浓度垂向分布的研究,还几乎是空白。综上所述,基于国内许多学者已经在这方面积累了大量的宝贵资料,我们在今后的工作中应继续加强这方面的研究,以期对该领域研究有所突破。

 

参考文献

[1] Christinasen,T.,Wiberg,P.L.,Milligan,T.G.. Flow andSediment Transport on a Tial Salt Marsh Surfance[J]. Estuarine,Coastal andShelf Science ,2000, 50:315-331.

[2] Langlois, E., Bonis,A.,Bouzille, J.B..Sediment and plantdynamics in saltmarshes pioneer zone: Puccinellia maritima as a keyspecies?[J].Estuarine,Coastaal and Shelf Science, 2003,56 :239-249.

[3] Scoffin ,T. P..Thetrapping and binding of subtidal carbonate sediments by marine vegetation inBimini Lagoon , Bahamas[J]. Journal of Sedimentary Petrology ,1970 ,40 :249– 2731.

 

[4] Shi ,Z. (时钟) ,Pethick ,J. S. ,Burd ,F. and Murphy ,B..Velocity profiles in a salt marsh canopy[J]. Geo- Marine Letters ,1996 ,16 :319 – 3231.

[5] Shi ,Z. (时钟) ,Pethick ,J. S. and Pye ,K. .Flow structure in and above the various heights of a saltmarshcanopy : a laboratory flume study[J]. Journal of Coastal Research ,1995 ,11:1204 – 1209.

[6] 时钟. 海岸盐沼植物单向恒定水流流速剖面[J]. 泥沙研究,1997, (3):82 –88.

[7] Thomas P., Kozerski,H-P. Particle trapping on leaves andon the bottom in simulated submerged plant stands.Hydrobiologia[J].Estuarine,Coastaal and Shelf Science 2003, 506–509:575-581.

[8] 庄武艺,J谢佩尔.海草对潮滩沉积作用的影响[J].海洋学报,1991,13(2):230~239.

[9] 杨世伦,缪莘.海岸盐沼泥沙过程现场实验研究[J].海洋工程,1998,19(3):51-59.

[10] 杨世伦,时钟,赵庆英.长江口潮沼植物对动力沉积过程的影响[J].海洋学报,2001,23(4):75-80。

[11] Nepf,H.M.,Mugnier,C.G.,Zavisyoski,R.A.The effects ofvegetation on longitudinal dispersion.Estuarine,Coastal and ShelfScience[J].1997, 44:675-684.

[12] Leonard ,L. A. ,Hine,A. C. and Luther ,M. E..Surficial sediment transport and deposition processesin a Juncus roemerianus marsh ,west - central Florida[J]. Journal of CoastalResearch ,1995 ,11 :322 – 3361.

[13] Fench,J.P., Spencer, T. Dynamics of sedimentation ina tidedominated backbarrier salt

marsh,Norfolk,UK[J].Marine Gerlogy,1993.110:315-331.

[14] Knuston ,P.L.,Seeling ,W. N. and Inskeep ,M. R...Wave damping in spartinaalternifloras

Marshes[J].Wetlands,1982,2 :87 – 104..

[15] Stumpf,R.P..The process of senimention on the surface ofa salt marsh[J]. Estuarine,Coastal and Shelf Science , 1983,17:495-508.

[16] Fonseca ,M. S. and Cahalan ,J . A. ,A preliminaryevaluation of wave attenuation by four species of seagrass. Estuarine ,Coastaland Shelf Science[J] ,1992 ,35 :565 – 5761.

[17] 朱骏, 杨世伦, 谢文辉, 赵庆英.潮间带短期冲淤过程的横向差异及其定量表达———以长江口南汇滨海岸段的观测分析为例[J].地理研究,2001,20(4):423 – 430.

[18] Thompson,C.L.E.,Amos,C.L. Umgiesser,G..A comparisonbetween fluid shear stress reduction by halophytia plants in VeniceLagoon,Italy and Rustico Bay,Canada-analyses of in situ measurements[J].Journalof Marine Systems,2004,51:293-308.

[19] Maker M E.The Deeestuary: its progressive silting and saltmarsh development[J].Transactions ofInstitute of British Geographer,1967,41:65-71.

[20] Armentano T V andWoodwell G M. Sedimentation rates in a Long Island marsh determined by 210Pbdating[J].Limnolgy and Oceanography,1975,20:452-456.

[21] Delaune R D,BaumannR H and Gosselink J G.Relationship among vertical accretion, coastalsubmergence, and erosion on a Louisiana Gulf Coast marsh[J].Journal ofSedimentary Petrology, 1983,53:147-157.

[22] Stevenson JC,Kearney M S and Pendleton E C.Sedimentation and erosion in a Chesapeake Baybrackish marsh system[M].Marine Geology, 1985,67:213-235.

[23] 时钟.长江口底部边界层细颗粒泥沙过程[J].海洋科学,2000,24(4):26-30.

[24] Shi Z, Ren L F ,LinH T1 Vertical suspension profile in the Changjiang Estuary[J]. Marine Geology ,1996 , 130 : 72~81.

[25] Shi Z , Ren L F ,Zhang S Y, Chen J Y1 Acoustic imaging of cohesive sediment resuspension andrentrainment in the Changing Estuary , East China Sea1[J]. Geo-Marine Letters ,1997 , 17 :162~168.

[26] 时钟.长江口细颗粒泥沙过程[J]. 泥沙研究,2000 , (6):72~811

[27] 时钟,凌洪烈. 长江口细颗粒悬沙浓度垂向分布[J]. 泥沙研究,1999 , (2):59~641

[28] 时钟,张淑英,Hamilton L J.河口近底细颗粒悬沙运动的声散射观测[J]. 声学学报, 1998 , 23(3) :221~227.

[29] 时钟,周洪强.长江口深水航道被槽口外悬沙浓度垂向分布[J]. 上海交通大学学报, 1997 ,32(11) :132~138.

[30] 时钟,朱文蔚,周洪强.长江口北槽口外细颗粒悬沙沉降速度[J]. 上海交通大学学报,2000 ,34 (1):18~23.

[31] 时钟,凌洪烈.长江口细颗粒悬沙浓度垂向分布[J]. 泥沙研究,1999 , (2):59~64.

[32] 茅志昌, 潘定安, 沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析[J].地理研究,2001,20(2):170-177.

 
 
更多
  • 相关新闻
  • 热点推荐
  • 我来说两句 ()
用户名: 验证码: 验证码
  • 本月热门下载
  • 环保推荐论文