摘要: 随着我国城镇化水平不断提高,污水处理设施建设高速发展,截至2010年,城镇污水处理能力已达到1.22亿m3,城镇污水处理厂已达2600多座,“十二五”期间还将增加污水处理能力900万m3,增建和在建城镇污水处理厂达1800多座[1]。伴随着污水处理能力的大幅提升,处理过程中大量产生的剩余污泥引起了越来越多的关注。以含水量80%计,2003年时我国污泥产量已达到1280万t/年[2],现阶段全国污泥总产生量很快将突破3000万t/年。按照预测,到2020年污泥产量将突破年6000万t[1]。由此可见我国污泥产量巨大且增长迅速。
关键词:污泥处理,污泥处置,现状分析,未来发展
中图分类号:TU992.3 文献标识码:A
我国污泥处理处置现状
污泥处理、处置定义
我国污泥处理处置的总体目标是实现污泥的减量化、稳定化、无害化、资源化。但目前我国还没有分别针对污泥处理和处置的准确解释,这一遗漏造成概念不清。过去,污泥处理与处置的区别即草率地以污水处理厂为界划分,厂内为污泥处理,场外为污泥处置[3]。这导致了责任主体的不清。处理、处置概念的混乱导致污泥处理、污泥处置目标不明,进而影响到管理、技术路线选取和技术标准的制定。
基于这一现状余杰等人的建议对污泥处理、处置分别定义如下:[4]
污泥处理:城市污水处理厂在污水处理单元操作过程中产生的污泥通过兼容、减量、稳定以及无害化的过程称为污泥处理。
污泥处置:经处理后的污泥或污泥产品以自然或人工的方式使其能够达到长期稳定并对生态环境无不良影响的最终消纳方式。
基于这一定义,污泥处理的工艺单元主要包括污泥浓缩、脱水、消化(厌氧消化和好氧消化)、堆肥和干化等工艺过程。而污泥处置则主要包括土地利用、污泥农用、卫生填埋、焚烧以及综合利用等方式。污泥处理处置的总体目标中,减量化、稳定化、无害化的目标可以认为是针对污泥处理提出的,而资源化的目标则是针对污泥处置提出的。
我国污泥处理现状
由于我国污水处理厂建设存在严重的“重水轻泥”现象,大多数污水处理厂中的污泥处理工艺还停留在传统的调制——脱水模式上。实现污泥稳定化处理的污水厂仍然不多。污泥的稳定化是污泥处理过程中重要的一个步骤。未经稳定的生污泥可被认为是污染物,含有易腐有机物、恶臭物质、病原体等,脱水效率低,卫生条件差。不进行污泥稳定化处理即脱水外运会造成如下结果[5]:
污泥体积庞大,造成污泥处置费用庞大;
污泥极不稳定,污泥中有机成分一旦发生腐败变质对环境会造成严重的二次污染;
污泥中的有用资源未得到利用,带来了资源的浪费,不符合可此续发展的目标。
但现实情况是,我国2600多座污水处理厂中只有近60座配有污泥厌氧消化设施,而其中正常运行的不到20座。未经稳定化处理的污泥占总污泥量的55.7%[5]。采用污泥好氧消化技术进行稳定处理的污泥约有26%[2]。与厌氧消化相比,好氧消化需要消耗更多的能量,运行费用较高,处理后污泥较难使用机械方法脱水,且不能像厌氧消化一样产生有价值的副产品(沼气)。
我国污泥处置现状
在各种污泥处置方式中,污泥的卫生填埋是目前我国普遍采用的处置方法。但由于脱水污泥的含水率较高及填埋场对污泥剪切力的要求,填埋场对污泥进场的要求越来越高。除此之外,污泥填埋不仅会严重危害填埋场的安全,而且会严重污染附近的生态环境。填埋的污泥会造成填埋场渗滤系统的严重堵塞,大大缩短垃圾填埋场的寿命,还会严重污染附近的地下水。
污泥的土地利用是我国污泥的另一个主要的处置方式。但是我国既没有系统、科学的管理办法,也没有配套的污泥标准系统,故污泥土地利用的安全性正在受到质疑。在土地利用时,由于施用处理不到位的污泥,使得污泥中有效成分不能被充分利用,有的导致土地盐害、烧苗和病虫害等问题,污泥在很多地区反而成为了一种污染源。
近年来污泥干化系统设备的国产化发展很快,污泥单独干化焚烧的案例不多,污泥协同焚烧是污泥热处理的发展趋势之一,国内已有实现了规模化的工程示范应用。
其他处置方法如污泥制砖、制陶粒等方式也有相应的应用案例。
此外,据估计我国约14%的污泥没有得到任何处置,这将给环境带来巨大的危害。
造成污泥处理处置现状的原因
技术原因
我国目前的污泥性质与国外发达国家相比存在差异主要表现在:
低有机质(发达国家VSS/SS为60-80%,我国VSS/SS为30-50%);
高含砂量(污水处理厂普遍采用了圆形沉砂池,脱砂效率低;大量的基建、施工建设,导致泥砂水排入污水管网系统等);
重金属含量高(工业污水源头重金属处理系统不完善)。
由于污泥含沙量高、有机物低、热值低,大大影响了污泥能源化处理的经济效益。重金属含量高直接影响了污泥土地利用的可能性。
除去我国污泥性质对污泥处理造成度阻碍之外,我国的污泥处理技术的发展也相对滞后。
污泥的厌氧消化是最重要的污泥稳定化的方式。其有良好的有机物降解率(40-60%),可使污泥体积明显减小;厌氧消化的高温环境可以杀灭病原菌,实现污泥的无害化;更重要的是厌氧消化相对好氧消化省去了曝气所需的能量消耗,还能够产生沼气,为污水处理厂供给能量。但厌氧消化同样存在缺点:设备多、工艺复杂,前期投资大;系统受环境条件变化影响较大,一旦受到扰动后恢复缓慢。对工作人员的要求很高。
我国目前还没有生产厌氧消化设备的能力,厌氧发酵工艺的建设主要依赖进口设备,且水厂管理操作人员的素质也很难达到厌氧消化设备所需要的水平。正是这些技术方面的不足,使得我国实现厌氧消化的水厂十分的稀少。
在污泥处置方面,较为新兴的污泥处置的方式中污泥干化焚烧工艺也依然部分依赖国外进口设备。
由此可见,在污泥处理的技术方面,我国仍有待提高,大量的技术空白仍有待科学研究的填补。
政策原因
除了技术原因之外,政策方面的不足是阻碍我国污泥处理处置进步的重要因素。
相较于污水处理,污泥的处理处置投资更大收益缺微小。发达国家污水处理厂的污泥处理投资成本和运行成本占污水处理厂总投资的30-50%[1]。但若污泥处理处置不当,则会造成严重污染。因此,基于污泥处理处置投资大、回收少的特点,管理上的严格标准,政策上的大力扶持显得更为重要。
在立法方面,关于污泥的立法明显滞后,缺乏与污泥处置相关的污染环境防治法规,所以社会对污泥的处理、处置不够重视。尤其是对污泥的生产者来说尚未有切实的紧迫感。
另外,污泥的处理处置涉及到的部门广,需要各方面协调和配合,如农业部门、林业部门、环保部门以及建设部门等。这一因素也增加了污泥处理处置的管理协调难度。
应对现状的措施及未来发展
面对严峻的污泥处理处置的形式,未来的发展方向在何处,具体的操作措施又当如何制定,这是我们面临的最直观最迫切的问题。国外在污泥处理处置方面走在了我们的前面,他们丰富的经验和技术值得我们借鉴。
国外发达国家很早就意识到污泥的处理处置是污水处理过程中必不可少的环节,从法律和政策上都对污泥处理处置的目标作了明确规定,并在执行上通过一系列政策予以保障。
美国有约16 000座污水处理厂,年产污泥量3 500万t(以80%含水率计)。建有650座集中厌氧消化设施处理58% 的污泥。污泥处理中,除了对产生污泥的处理,还将整个污水处理系统与污泥处理系统看做是一个有机的整体,在污水处理中即实现了污泥的共处理(cotreatment)[8]。污泥的最终处置方式分布为:60% 农用、3% 生态修复、17% 填埋和20%焚烧。
自1998年起,欧盟便立法禁止海洋排放污泥,同时规定污泥的卫生填埋需被逐渐禁止[6]。
欧盟国家的50 000 座污水处理厂年产污泥量4 000 万t(以80%含水率计),有50%以上的污泥进行了厌氧消化稳定处理,其中英国的污泥厌氧消化率达到66% 。污泥的最终处置方式为:50%以上农用、20% 填埋、20% 焚烧,污泥填埋量持续减少,土地利用量逐渐增加,焚烧量维持不变。
我国城镇污泥处理处置起步晚且任务紧迫,可以充分吸取西方发达国家的成功经验。
技术方面,进一步加快污泥处理处置设备的国产化,从而降低污泥处理处置工艺的基建费用。同时还需要提高水厂的管理运行水平,以满足污泥处理的需求。另一方面,在新兴污泥处置领域,当大积极开发污泥资源化处置技术,为污泥的出路广开源。
政策方面,更有效地协调涉及多单位的污泥处理处置的管理方式。制定更具约束力的强制性污泥排放标准,进而改变水厂以往“重水轻泥”的态度。积极扶持污泥处理处置新技术的研发应用,鼓励水厂对污泥处理的投入。通过政策调控的手段控制污泥的减量化、稳定化、无害化,鼓励污泥的资源化。
参考文献
1. 戴晓虎 我国城镇污泥处理处置现状及思考. 给水排水 v.48;No.359, 1-5 (2012).
2. 余杰, 田宁宁 & 王凯军 我国污泥处理、处置技术政策探讨. 中国给水排水, 84-87 (2005).
3. 杭世珺, 陈吉宁, 郑兴灿, 王凯军 & 王洪臣 污泥处理处置的认识误区与控制对策. 中国环保产业, 11-14 (2005).
4. 余杰, 田宁宁, 王凯军 & 任远 中国城市污水处理厂污泥处理、处置问题探讨分析. 环境工程学报, 82-86 (2007).
5. 许晓萍 我国市政污泥处理现状与发展探析. 江西化工 No.99, 24-32 (2010).
6. Fytili, D. & Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renewable and Sustainable Energy Reviews 12, 116-140 (2008).
7. 余杰 & 田宁宁 我国污泥处理处置有关政策探讨分析. 中国建设信息(水工业市场), 7-9 (2009).
8. Carrère, H. et al. Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials 183, 1-15 (2010).