生化处理中一般采用活性污泥法,其主要的工艺流程包括:预处理>初次沉淀>混合>曝气>二次沉淀,曝气是活性污泥法处理废水的重要环节,曝气在曝气池中完成。因此曝气池的设计在整个生化处理工艺设计中也就占到十分重要的地位。

按照曝气的方式不同,曝气池的分类也各不相同,一般情况下,我们可以分为推流式曝气池和完全混合型曝气池两种,各种不同的曝气方式设计的参数也是不相同的,这主要是根据实际条件来进行相应的调整。曝气设备的选择则是经济效益和运行成本控制的关键。

曝气池的设计计算主要包括:①曝气池容积的计算;②池体设计;③需氧量和供氧量的计算。

一、曝气池容积的计算

1、有机负荷计算法

计算曝气区容积,常用的是有机负荷计算法。负荷有两种表示方法,即污泥负荷和容积负荷。一般采用污泥负荷,计算过程如下:

(1)确定污泥负荷

污泥负荷一般根据经验值确定,可以参照有关成熟经验中的数值。

表1:部分活性污泥工艺参数和特点

   

(2)确定所需要微生物的量

微生物的量(XV)是由所要处理的有机物的总量和单位微生物在单位时间内处理有机物的能力(即污泥负荷)决定的。

根据污泥负荷的定义:Ns=Q(SO-Se)/(XV),可得公式如下:

(XV)= Q(SO-Se)/ Ns

式中:

V——曝气池容积,m3

Q——进水设计流量,m3/d

SO——进水的BOD5浓度, mg/L

Se——出水的BOD5浓度, mg/L

X——混合液挥发性悬浮固体,(MLVSS)浓度 mg/L

Ns——污泥负荷,kgBOD5/(kgMLVSS.d).

(3)计算曝气池的有效池容

确定了微生物的总量后,需要有污泥浓度的数值才能计算曝气池的容积。污泥浓度根据所用工艺的污泥浓度的经验值选择,一般在3000—6000mg/L之间。经过实验或其他方式确定了回流比、SVI值后也可以根据下式计算:

X=Rrf106/SVI(1+R)

式中:

R——污泥回流比,%

r——二次沉淀池中污泥综合系数,一般为1.2左右

f——MLVSS/MLSS

曝气池容积的计算公式如下:

V=(VX)/X=Q(SO-Se)/(XNS)

式中:

Q——废水量,m3/d

Q(SO-Se)——每天的有机基质降解量,kg/d

V——曝气池有效容积,m3

(4)确定曝气池的主要尺寸

主要确定曝气池的个数、池深、长度以及曝气池的平面形式等。按照每日的处理量来确定池体的个数,同时,由于工艺的不同,曝气池的式样和个数各不相同,因此在实际的设计中需要我们有现场的实际地形图和整体效果图来做依据,这样设计出来的池体才可以满足工艺处理需要,并且与周围的环境和谐一致。

2、动力学方法

也可用动力学方法计算曝气池的容积。计算过程如下:

(1)确定所需的动力学常数的值

包括Y、Kd、Ks、umax,在没有实验数据时可以根据表2、表3 选择适当的数值。

表2:生活污水的Y、Kd值

 

表3:几种工业废水的Y、Kd值

 

(2)确定污泥龄

根据公式1/θmin= (Y×umax×SO/ SO+Ks)-Kd可以确定θmin值。

θmin=1/(Y×umax-Kd)

式中:umax——基质达到饱和浓度时,微生物的最大比增殖速率,d-1

实际活性污泥处理系统工程中所采用的θC(污泥龄.d)值,应大于θmin值,实际取值按公式1/θmin= Y×umax-Kd乘以安全系数。安全系数一般在2—20。也可以根据经验进行取值,参照表1数据。

(3)确定所需的微生物量

根据公式1/θC=[Y×umax×(SO-Se)/ (SO-Se)+KsIn SO/ Se]-Kd来确定微生物的量,可以得到微生物量的计算公式:

(XV)=QθCY(SO-Se)/(1+KdθC)

(4)确定曝气池的容积

首先确定微生物浓度,其方法与前面的负荷设计法相同。

V=(VX)/X

(5)根据有关公司对出水浓度进行校核;或者根据污泥负荷的定义对污泥负荷进行校核。这两种方法取其中一种就可以。

二、需氧量和供气量的计算

1、需氧量

活性污泥的正常运行,除需要有性能良好的活性污泥以外,还需要进行充足的氧气供应,活性污泥法处理系统的日平均需氧量(O2)可按公式1/θC=YNs-Kd计算,去除1kgBOD5的需氧量(ΔO2)根据下式计算,也可根据经验数据选用。

ΔO2= /Ns

废水a’、b’的值和部分工业废水的a’、b’值可以从表4、表5选取。

表4:活性污泥法处理城市废水时的废水a’、b’和ΔO2的值

 

表5:部分工业废水的a’、b’值

 

2、供气量

在需氧量确定以后,取一定的安全系数,得到实际需氧量(Ra),并转化为标准状态需氧量(Ro)。公式如下:

Ro= RaCs/[α(βρCS(T)-CT)×1.024(T-20)]

式中:

CS——在1.03×105Pa条件下氧的饱和浓度,mg/L

X——混合液挥发性悬浮固体,(MLVSS)浓度 mg/L

在实际工程中,所需要的空气量比标准条件下所需要的空气量要多33%~61%,具体在工程中需要的空气量可以根据实际情况来确定,在标准状态需氧量确定之后,根据不同设备厂家的曝气机样本和手册,计算出总的能耗。总能耗确定后,就可以确定曝气器的数量。

鼓风曝气要确定其供气量,公式为:

Gs=Ro/0.3×EA

式中:

Gs——空气量

EA——曝气系统的充氧效益

计算出空气量后,根据鼓风机的样本便可以确定鼓风机的数量和型号。

三、曝气设备的选择

(1)曝气设备所具有的功效

①产生并维持有效的气水接触,并且在生物氧化作用不断消耗氧气的情况下保持水中一定的溶解氧浓度;

②在曝气区内产生足够的混合作用和水的循环流动;

③维持液体的足够速度,以使水中的生物固体处于悬浮状态。

各种曝气设备的特点是各不相同的,因此曝气设备的用途和使用的范围也就有各种不同,因此,在工艺设计中,要根据实际的需要和企业所能够承担的成本来选择曝气设备,现有的曝气设备分为两大类:淹没式曝气器和表面曝气器(表6:废水处理中的曝气设备)

表6:废水处理中的曝气设备

 

曝气设备的主要技术性能指标如下:

①动力效率(EP) 每消耗1KW电能转移到混合液中的氧量,以kg/(KW.h)计;

②氧的利用效率(EA) 通过鼓风曝气转移到混合液的氧量,占总供氧量的百分比(%);

③氧的转移效率(EL)也称为充氧能力,通过机械曝气装置,在单位时间内转移到混合液中的氧量,以kg/h计。

鼓风曝气设备的性能按照①、②两项指标评定,机械曝气装置则按照①、③两项指标评定。在工艺设计和设备选择中我们需要考虑性能、特点以外,还需要考虑有关叶轮直径和曝气池直径的比例,一般比值在1/3--1/5左右,过大可能伤害污泥,过小则充氧量不足,叶轮和水深的比值一般采用2/5—1/4,池深过

大,将影响充氧和泥水混合。

由于各种鼓风机的型号和性能各不相同,因此所产生的噪声也就不相同,相对应的机房设计也就各自有不同的要求,根据实际需要和性能考虑,在工艺中一般选择同一型号的设备并且要有备用机,备用台数的选择按照工作机≤3台时,备用1台,当工作机≥4台时,备用2台;电源要用双电源,按照最大负荷设

计;每台单机的基础间距应该保持1.5米;配套的机房应该包括:机械间、配电室、进风室(设空气净化设备)、值班室,值班室与机械间应有隔音设备和观察窗,还应设自控设备;机房内、外都要进行防止噪声的措施,使其符合国家有关标准。

无论那一种废水,其处理工艺都是以一些基本的单元技术为基础组合而成的,在我国的生化处理技术上在过去的30年间有了很大程度的发展与进步,曝气池的设计与曝气设备的选择也有很大程度的变化,但是,应该遵从的基本原理和设计计算方式是不变化,因此我们需要了解最基本计算方式和选择原则,这样

才可以提高现有的处理设备的利用率,减少运行费用,节约成本。